CoolTerm Remote Control Socket

Protocol Specification v0.9.10

Q)

Roger Meier, January 2025

Table of Contents

CoolTerm Remote Control SOCKET..........vveiiiiiiiieeeiie e 1
Table Of CONTENTS......ccuviiiiiiiiii e et e et e e et e e e e ere e e e eeaaaeeeeennneeeeas 1
LSt OF FIGUIES ..ttt ettt ettt e et e et e eabeeseeenbeenseesnseenseas 2
LISt OF TADIES .ot e e e e e e e e eeta e e e e eeaaaeeeeeanees 2
| I 1315 (o Yo L1 o1 (0) s DO USROS 3
2. CoolTerm Remote Control Socket Protocol............cccoveveieiiuiiiieeiiiieeeeeieeeeecee e 3
2.1, OVEIVIEW ...uviiiieiiee ettt et e et e e e e et e e e eeataeeeeeaseeeeeetreeeeeeaneeeeennes 3
R o) o V<) T U URRRRRRRR 3
2.3 CHIENE.ceeeeeieee e e e et e e e e e e etra e e eeaaaeeaanas 4
2.4, ReMOLE PACKELooiiiiiiiieceeeee e 4
2.4.1. Remote Packet FOrmat..........ccoooveeiviiiiiiiiiic e 4
242, EXAMPLCS..eiiiiiiiiieiieeie ettt ettt et ettt ettt be e eneas 5
2.4.3. Remote Packet OP COdESuveeeeeuvieeeeeiieee e 6
2.4.4. Remote Packet ACK COAESvviieeuuiieeieiieeeeeeieee e 12
Protocol Specification v0.9.10 1

CoolTerm Remote Control Socket

List of Figures

Figure 1: Remote Packet FOrmat.ccooouiiiiiiiiiiiiiciiecee e 4
List of Tables

Table 1: Remote PACKEt OP COAES. ...oeuureeeeeeiieeeaeeeeeeennennes 11
Table 2: Remote PaCKet ACK COAES. ...ouueureiiieeieeeneseeeeeneennes 12

2 Protocol Specification v0.9.10

1. Introduction

This document specifies a protocol, based on TCP/IP, which allows actions, normally
performed via the CoolTerm GUI, to be automated by a separate piece of software (e.g.
scripting software). A listening TCP socket embedded in CoolTerm (Remote Control
Socket), which is enabled via the CoolTerm GUI, can accept connections from the same
computer on which CoolTerm is running as well as other computers that can make a
TCP/IP connection to the computer on which CoolTerm is running. Another application
that is connected to the Remote Control Socket can send commands to initiate actions
normally performed via the GUI (e.g. open/closing the serial port, reading/writing data,
etc.).

2. CoolTerm Remote Control Socket Protocol

2.1. Overview

The CoolTerm Remote Control Socket Protocol is based on TCP/IP and is therefore a
Client/Server type protocol. The CoolTerm application acts as the server while an
external application (e.g. scripting application) acts as a client. Connections and
subsequent data communication are initiated only by the client. I.e. the client can connect
to and disconnect from a server socket, and only the client can initiate communication
with the server. The server cannot send any unsolicited data.

2.2. Server

The CoolTerm application has an embedded Remote Control Socket that is configured as
server. The socket is normally disabled, but it can be enabled via the CoolTerm GUI. If
enabled, the socket listens on a specified port for incoming connections. Once connected,
the server waits for incoming packets. The server always responds to packets from the
client to acknowledge them and to return data asked for by the client. The server does not
send any unsolicited data.

The specifications for the Remote Control Socket configured as server are as follows:

e Default Port: 51413

e Normally disabled. Can be enabled via CoolTerm GUI.

e Always acknowledges receipt of a valid Remote Packet with another Remote
Packet, i.e. ACK_SUCCESS, together with data requested by the client (if
necessary).

e Always acknowledges receipt of invalid Remote Packets with the appropriate
ACK code, i.e. ACK_ BAD OPCODE, ACK BAD ARGUMENT, etc.

e Always acknowledges receipt of incomplete Remote Packets with the
appropriate ACK code after a specified timeout, i.e. ACK_TIMEOUT

e Default timeout for incomplete packets: 1 second.

Protocol Specification v0.9.10

CoolTerm Remote Control Socket

2.3. Client

The client is an application that connects to the server on a specified port, using an
embedded Remote Control Socket configured as client. Once a connection with the
server is established, it is the responsibility of the client to drive the communication. The
server will not send any data without a request from the client. The server will
acknowledge any Remote Packet sent by the client with a response. If data is requested
by the client, the server will attach the requested data to the response. The client always
expects a response from the server for any sent packet. If no response is received within a
specified timeout, it is the responsibility of the client application to either retry the
communication or alert the user.

2.4. Remote Packet

24.1. Remote Packet Format
The Remote Packet format is depicted in Figure 1.

OoP/
1F LEN PID ACK ID DATA
1 Byte 2 Bytes 1 Byte 1 Byte teye 6:(;5:5—3-5%);&3; _______________

Figure 1: Remote Packet Format.
A Remote Packet is comprised of the following components:

e 1F: This preamble is present at the beginning of all Remote Packets. This
allows the Remote Control Socket to recognize the beginning of a new packet.
As the name suggests, the value is Ox/F.

e LEN: This is the length field of the packet. Its value is the length of the
DATA field. LEN is Ulntl6, and the byte-order is little endian.

e PID: This is the Packet ID. It is the client’s responsibility to pick a new
Packet ID for every new packet. The server will respond to received packets
by using the received packet ID in its response. This allows the client to
associated sent packets with corresponding response (ACK) packets from the
server.

e OP/ACK: This field is used for the OP (Operator) code for packets sent from
the client to the server, and for the ACK (Acknowledge) code for packets sent
from the server to the client.

e ID: This is the terminal ID to which the packet is to be directed. Each
CoolTerm terminal window has its own, unique, terminal ID. This allows OP
packets to be addressed to specific terminal windows. While not all OP codes
are address to specific terminal windows, the ID byte needs to be present in
the packet regardless (the actual value will be ignored by the server).
Responses from the server will always be addressed to OxFF

4 Protocol Specification v0.9.10

e DATA: If data is to be sent, it done is via the DATA field of the packet. The
DATA field can contain 0 to 65535 bytes. The DATA field is to be formatted
as a character string.

Packets sent from the Client to the Server always contain an OP Code. The DATA field
is only populated if required by the OP Code.
Packets sent from the Server to the Client always contain an ACK Code. Data requested
by the Client will be sent via the DATA field.

2.4.2. Examples

The following examples illustrate possible communications between Client and Server.
Refer to 2.4.3 and 2.4.4 for details on OP and ACK codes, respectively.

Example 1: The following example, the Client sends an OP_PING command to the
server, and the server responds with and ACK_SUCCESS code. The packet bytes are
shown in hexadecimal format:

Packet sent by Client: 1F 00 00 DF 00 00
e LEN: 0x0000 (0 Bytes)
e PID: 0xDF
e OP: 0x00 (0: ping)
e ID: 0x00

Response sent by Server: 1F 00 00 DF FF FF

e LEN: 0x0000 (0 Bytes)

e PID: 0xDF

e ACK: OxFF (255: success)
o ID: OxFF

Example 2: In this example, the client requests the name of the window with index 3
from CoolTerm:

Packet sent by Client: 1F 01 00 E8 1A 00 33
e LEN: 0x0001 (1 Byte)
e PID: OxES8
e OP: Ox1A (26: GetWindowName)
e ID: 0x00
e DATA: 0x33 (“37)

Response sent by Server: 1F OA 00 E8 FF FF 43 6F 6F 6C 54
65 72 6D 5F 30

e LEN: 0x000A (10 Bytes)
e PID: 0xE8
e ACK: OxFF (255: success)

Protocol Specification v0.9.10

CoolTerm Remote Control Socket

e ID: 0xFF
e DATA: “CoolTerm_0”
2.4.3. Remote Packet OP Codes
The Remote Protocol consists of, but is not limited to, the OP Codes listed in Table 1
below.
System Commands
Description OP | Data Return Data
OP_PING 0 |- -

Causes the Server to return an
ACK_SUCCESS packet if a sound processor
is online and ACK_OFFLINE if no sound
processor is currently online.

OP_LAST_SOCKET_ERROR

Returns the error code for the last socket
error. Returns 0 for no error.

LastSocketError as String

Window/App Commands
Description OP | Data Return Data
OP_NEW_WINDOW 20 | - ID as String
Opens a new CoolTerm window. Returns the
ID of the new window.
OP_LOAD_SETTING 21 FilePath as String ID as String

Instructs CoolTerm to load the connection
settings specified by the FilePath. Returns the
ID of the new window if loading was
successful, or -1 if it was not.

FilePath can be either
absolute or relative to the
location of the CoolTerm
executable.

OP_SAVE_SETTING

Instructs CoolTerm to save the settings of the
terminal window specified by WindowName at
the path specified by FilePath

22 FilePath as String

FilePath can be either
absolute or relative to the
location of the CoolTerm
executable.

Success as String

“True”: Success
“False”: No Success

OP_GET_WINDOW_COUNT

Returns the number of open terminal windows.

23 | -

WindowCount as String

OP_GET_WINDOW_ID 24 Index as String ID as String
Returns the ID of the window with the [0..WindowCount-1]

specified Index, or -1 if the index is invalid.

OP_GET_WINDOW_ID_FROM_NAME 25 | WindowName as string ID as String

Returns the ID of the window with the
specified name, or -1 if the window doesn't
exist.

OP_GET_WINDOW_NAME

Returns the name of the terminal window with
the specified index, or an empty String if the
index is invalid.

26 Index as String

[0..WindowCount-1]

Name as String

OP_INDEX_OF_WINDOW_ID 27 - Index as String
Returns the Index of the window with the

specified ID.

OP_CLOSE_WINDOW 28 - -

Closes the window with the specified ID.

Protocol Specification v0.9.10

OP_QUIT

Quits CoolTerm.

29

OP_VERSION

Returns the CoolTerm version.

30

CoolTermVersion as String

OP_SHOW_WINDOW

Brings the window with the specified ID to the
front.

31

OP_PRINT

Prints the current contents of the window with
the specified ID.

32

Success as String

“True”: Success
“False”: No Success

OP_GET_FRONTMOSTWINDOW

Returns the ID of the frontmost terminal
window. Returns -1 if there are no open or
visible windows.

33

ID as String

OP_SET_FRONTMOSTWINDOW

Makes the specified window the frontmost
CoolTerm window. Also brings the window in
front of all other windows on the system if
BringToFront is “True”.

35

BringToFront as String

“True”: BringToFront of
ALL windows

“False”: Only make
frontmost CoolTerm
window.

ID as String

OP_PAUSE_DISPLAY

34

Value as String

“True”: On
“False”: Off

Serial Port Commands

Description OP | Data Return Data

OP_CONNECT 40 | - Success as String

Opens the serial port. Returns True on “True”: Success

success. “False”: No Success

OP_DISCONNECT 41 - -

Closes the serial port.

OP_IS_CONNECTED 42 - Success as String

Returns True if the serial port is open. “True”: Success
“False”: No Success

OP_LAST_ERROR 43 | - ErrorCode as String

Returns the last serial port error code.

Data

Exchange Commands

Description

oP

Data

Return Data

OP_WRITE

Writes data to the serial port.

50

Data as String

OP_WRITE_LINE

Writes data terminated by the "Enter Key
Emulation" character specified in the
connection settings to the serial port.

51

Data as String

OP_WRITE_HEX

Writes Hex formatted data to the serial port.
This is useful when transmitting binary data
that can’t be expressed with a regular
character string.

52

HexData as String

OP_BYTES_LEFT_TO_SEND

Returns the number of bytes left in the
transmit buffer awaiting transmission.

53

NumBytes as String

OP_POLL

54

Protocol Specification v0.9.10

CoolTerm Remote Control Socket

Polls the serial port. This causes all data
currently available in the serial port receive
buffer to be transferred to CoolTerm's receive
buffer immediately. It is recommended to call
this method before calling OP_READ,
OP_READ_HEX, OP_READ_ALL,
OP_LOOK_AHEAD, OP_LOOKAHEAD_HEX,
and OP_BYTES_AVAILABLE.

OP_READ

Reads and removes the specified number of
characters from the receive buffer.

55

NumBytes as String

Data as String

OP_READ_ALL

Reads and removes all characters from the
receive buffer.

56

Data as String

OP_READ_HEX

Reads and removes the specified number of
characters from the receive buffer. Returns the
read data in Hex format.

57

HexData as String

OP_READ_ALL_HEX

Reads and removes all characters from the
receive buffer. Returns the read data in Hex
format.

58

HexData as String

OP_BYTES_AVAILABLE

Returns the number of characters currently
available in the receive buffer.

59

NumberOfBytes as string

OP_LOOK_AHEAD

Returns the contents of the receive buffer
without removing any data.

60

Data as String

OP_LOOK_AHEAD_HEX

Returns the contents of the receive buffer in
Hex format without removing any data.

61

HexData as String

OP_CLEAR_BUFFER

Clears receive buffer.

62

OP_RECEIVE

Writes data to the receive buffer.

63

Data as String

Serial

Commands

Description

oP

Data

Return Data

OP_SEND_BREAK

Sends a break signal.

70

OP_FLUSH_PORT

Flushes the Serial Port Buffers.

71

OP_RESET_PORT

Resets the Serial Port.

72

OP_GET DTR

Returns the state of the DTR status line.

73

State as String

“True”: active
“False: inactive

OP_SET DTR

Sets the state of the DTR status line.

74

State as String

“True”: active
“False”: inactive

OP_GET _RTS

Returns the state of the RTS status line.

75

State as String

“True”: active
“False: inactive

OP_SET RTS

76

State as String

Protocol Specification v0.9.10

Sets the state of the RTS status line.

“True”: active
“False”: inactive

OP_GET_CTS 77 | - State as String
Returns the state of the CTS status line. “True”: active
“False: inactive
OP_GET_DSR 78 | - State as String
Returns the state of the DSR status line. “True”: active
“False: inactive
OP_GET_DCD 79 | - State as String
Returns the state of the DCD status line. “True”: active
“False: inactive
OP_GET_RI 80 | - State as String
Returns the state of the RI status line. “True”: active
“False: inactive
OP_SET_BREAK 81 State as String -
Sets the state of the BREAK signal. “True”: active
“False”: inactive
OP_GET_BREAK 82 - State as String

Returns the state of the BREAK signal.

“True”: active
“False: inactive

Text Data Exchange Commands
Description OP | Data Return Data
OP_SEND_TEXTFILE 90 FilePath as String Success as String
Sends the text file with the specified FilePath.. FilePath can be either “True”: Success
absolute or relative to the “False”: No Success
location of the CoolTerm
executable.
OP_CAPTURE_START 91 FilePath as String Success as String
Starts capture of data to the text file at the FilePath can be either “True”: Success
specified FilePath absolute or relative to the “False”: No Success
location of the CoolTerm
executable.
OP_CAPTURE_PAUSE 92 | - -
Pauses a Capture currently in progress.
OP_CAPTURE_RESUME 93 | - -
Resumes a previously paused Capture.
OP_CAPTURE_STOP 94 | - -
Stops a capture currently in progress and
closes the file.
OP_CAPTURE_APPEND 95 FilePath as String Success as String
Appends to an existing capture file. FilePath can be either “True”: Success
absolute or relative to the “False”: No Success
location of the CoolTerm
executable.
Connection Setting Commands

Description OP | Data Return Data
OP_RESCAN_SERIALPORTS 100 | - -

Rescans the system for available serial ports.

OP_GET_SERIALPORT_COUNT 101 | - SerialPortCount as String
Returns the number of available serial ports.

OP_SERIALPORT_NAME 102 | SerialPortindex as String SerialPortName as String

Returns the name of the Serial Port with the

[0..SerialPortCount-1]

Protocol Specification v0.9.10

CoolTerm Remote Control Socket

specified index, or an empty String if the index
is invalid.

OP_GET_CURRENT_SERIALPORT 103 | - SerialPortindex as String

Returns the index of the currently selected

Serial Port.

OP_SET_CURRENT_SERIALPORT 104 | SerialPortindex as String Success as String

Selects the serial port with the specified index. [0..SerialPortCount-1] “True”: Success

This can only be done while the port is closed. “False”: No Success

Returns True on success.

OP_GET_PARAMETER 110 | ParameterName as String Value as String

Returns the value of parameter specified by

ParameterName.

To obtain a list of all available Parameter

names, use OP_GET_ALL_PARAMETERS.

OP_SET_PARAMETER 111 | ParameterName + NUL + Success as String
Value as String

Returns the value of the parameter specified “True”: Success

by ParameterName. ParameterName and “False”: No Success

Value need to be separated by the NUL

(ASCII 0) character. Returns True on success.

To obtain a list of all available Parameter

names, use OP_GET_ALL_PARAMETERS.

OP_GET_ALL_PARAMETERS 112 | - ParameterList as String

Returns a list of all parameter names their
values (one per line).

Data

Exchange Commands

Description OP | Data Return Data
OP_DISPLAY_ON 120 | - -

Enables display updates from the receive

buffer.

OP_DISPLAY_OFF 121 | - -

Disables display updates from the receive

buffer.

OP_DISPLAY_CLEAR 122 | - -

Clears the contents of the display.

OP_DISPLAY_APPEND 123 | Data as String -

Adds data to the contents of the display.

File Transfer Commands
Description OP | Data Return Data
OP_SEND_FILES 130 | FilePaths as string, Mode Success as String
as integer
Sends the file(s) listed in FilePaths (TAB- “True”: Success
separated string) using the specified mode. Mode: “False”: No Success
¢ 1: XMODEM
e 2: XMODEM-CRC
¢ 3: XMODEM1K
e 4:YMODEM
OP_RECEIVE_FILES 131 | Destination as string, Mode | Success as String
as integer
Receives files to the specified destination “True”: Success
using the specified mode. Mode: “False”: No Success
¢ 1: XMODEM
e 2: XMODEM-CRC
¢ 3: XMODEM1K
4: YMODEM
OP_FILE_TRANSFER_STATUS 132 | - Status as integer

Returns the file transfer status.

e -10: Cancelled via GUI
e -3: Connecting

10

Protocol Specification v0.9.10

-2: Transfer in Progress
-1: Transfer failed

0: idle, or cancelled by
protocol

> 0: Number of Bytes
(XMODEM) or Files
(YMODEM) transferred
successfully

Table 1: Remote Packet OP Codes.

It is the responsibility of the Server (i.e. CoolTerm) to execute the proper operations upon

receipt of one of these OP packets. It is also the Server’s responsibility to verify the
validity of received packets and respond to the client accordingly using ACK Codes.

Protocol Specification v0.9.10

11

CoolTerm Remote Control Socket

244,

Remote Packet ACK Codes

The Remote Protocol consists of, but is not limited to, the ACK Codes listed in Table 2

below.

Description ACK
ACK_SUCCESS 255
ACK_BAD_OPCODE 254
ACK_BAD_ARGUMENT 253
ACK_TIMEOUT 252
ACK_OFFLINE 251

Table 2: Remote Packet ACK Codes.

ACK SUCCESS: This code is used by the Server to indicate to the Client
that the packed was successfully received and to return data requested by the
Client in its DATA field.

ACK_BAD_OPCODE: This code is sent by the server if the OP code in the
received packet is invalid

ACK_BAD_ARGUMENT: This code is sent by the server if the argument
contains invalid values (outside the valid number range) or has an invalid
format (e.g. Byte instead of Ulnt16). The server also returns this code the ID
field in the received OP packet is invalid.

ACK_TIMEOUT: This code is used by the server to indicate to the client
that it has not received a complete package within a specified time frame
(default: 1 second).

ACK_OFFLINE: This code is returned by the server to indicate to the client
that no sound processor is online.

Upon receipt of an ACK code that indicates an error, it is the responsibility of the Client
software to either retry the communication or to alert the user.

12

Protocol Specification v0.9.10

